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This paper presents an order-reduction-iteration approach for vibration
analysis of viscoelastically damped sandwiches. The damping property of all
kinds of viscoelastically damped sandwich structures can be predicted by the
approach that consists of two steps, i.e., the ®rst-order asymptotic solution of
the non-linear real eigenequation and the order-reduction-iteration of the non-
linear complex eigenequation. The experimental results for sandwich beams
agree well with the numerical ones in this paper.
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1. INTRODUCTION

The use of distributed viscoelastically damped materials in engineering has a
long history as a means of controlling structural resonant vibration and acoustic
radiation. One of the most effective methods of incorporating viscoelastic
material in a built-up structure is in the form of constrained layers, i.e.,
sandwiches. Because of the frequency-variant coef®cient property of the stiff-
ness matrices of the sandwiches and their complicated geometrical property, it
is dif®cult to get theoretical solutions about their eigenequations directly. By
now there are four types of ®nite element analysis methods for analyzing
viscoelastically damped sandwiches, i.e., (1) the direct frequency response
method, (2) the complex eigenvalue method, (3) the modal strain energy method,
and (4) the asymptotic method.

1.1. THE DIRECT FREQUENCY RESPONSE METHOD [1]

The direct frequency response method is based on the so-called
correspondence principle of linear viscoelasticity. The equation of motion for a
structure or structural element is derived in the way that considers the Young's
modulus of all materials as real. The equation is then solved for the case of an
applied load that varies sinusoidally in time. The Young's modulus of the
viscoelastic material is then taken to be complex, and the ratio of the imaginary
part of Young's modulus to the real part is called the material loss factor. This
implies that stress and strain in the viscoelastic material can be out of phase and
thus energy can be dissipated. The storage and loss modulus of the viscoelastic
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material are generally obtained by using an experimental method with material
specimens having imposed sinusoidal stress or strain.

1.2. THE COMPLEX EIGENVALUE METHOD [2]

The complex eigenvalue method is similar to the direct frequency response
method in that the complex Young's modulus is assumed. The following
eigenequation for free vibration of the viscoelastically-damped system is then
obtained:

�ÿo2M� K� jbK2�X � 0, �1�
where X is the complex amplitude vector and b is the material loss factor of the
viscoelastic material. o is the circular frequency, M, K and K2 are the mass
matrix, the real part of the total stiffness matrix and the real part of the stiffness
matrix formed by the viscoelastic material, respectively. If the stiffness matrices
K and K2 are constant, equation (1) may be recast as an algebraic eigenvalue
problem with complex eigenvalues and eigenvectors. The damping ratios of the
complex modes are obtained from the complex eigenvalues.

1.3. THE MODAL STRAIN ENERGY METHOD [3]

In the modal strain energy method, it is assumed that the damped structure
can be represented in term of real normal modes of the associated undamped
system if appropriate damping terms are inserted into the uncoupled modal
equation of motion. That is

�ar � Z�r�or _ar � o2
rar � 0, �2�

x �
X

fff�r�ar�t� r � 1, 2, 3; :::; �3�
where ar is the rth modal co-ordinate, or is the natural circular frequency of the
rth mode, fff(r) is the rth modal vector of the associated undamped system, Z(r) is
the loss factor of the rth mode, and x is the displacement vector. The modal loss
factors are calculated by using the undamped modal vectors and all material loss
factors. For sandwich structures, the material loss factors of the metal face
sheets are very small compared with the viscoelastic core. In this situation, the
rth modal loss factor is found from

Z�r� � b�r��V�r�v =V�r��, �4�
where b(r) is the material loss factor of the viscoelastic core evaluated at the rth
resonant frequency and V

�r�
v =V�r� is the fraction of elastic strain energy

attributable to the sandwich core when the structure deforms in the rth mode.

1.4. THE ASYMPTOTIC METHOD [4]

The fourth method is the asymptotic method. The following equation is
presented:

��K� jbK2� ÿ o2�1� jZ�M�fff � 0: �5�
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In order to avoid solving the complex eigenvalue problem, the eigenvalues and
the eigenvectors are expressed as the progression of the complex parameter
m� jb:

fff � fff0 � mfff1 � m2fff2 � m3fff3 � . . . ,

o2 � o2
0 � m2o2

2 � m4o2
4 � . . . ,

jZ � mZ1 � m3Z3 � m5Z5 � . . . : �6�
Substituting equation (6) into equation (5), one can gain the successive equations
that the asymptotic solution must satisfy. After solving those equations, the
factors fff0, fff1, fff2 , . . . , o0 , o2 , o4, . . . , Z1, Z3 , Z5, . . . , can be determined. The
asymptotic method can improve the precision of resonant frequencies and loss
factors can be performed easily.
In this paper, an order-reduction-iteration approach of ®nite element analysis

for sandwich structures is developed to indicate and solve the frequency-variant
coef®cient property of the stiffness matrices ef®ciently.

2. THE ORDER-REDUCTION-ITERATION APPROACH

The order-reduction-iteration approach can get resonant frequencies and
modal loss factors of sandwiches more precisely and more easily. It consists
of two steps, i.e., the ®rst-order asymptotic solution of the non-linear real
eigenequation and the order-reduction-iteration of the complex eigenequation.
The discrete (i.e., ®nite element) partial differential equation for free vibration of
sandwiches (or any structure) is:

M�X� �K� jbK2�X � 0, �7�
where the meanings of all parameters are the same as equation (1). K, K2 and b
are all the functions of the real storage module GR(l) that varies with the
frequency. Equation (7) can be converted into an eigenvalue problem by
assuming

X � jjje j
���
lt
p

, �8�
where l and jjj are the complex eigenvalue and eigenvector. Substituting
equation (8) into equation (7), one obtains eigenequation

�K� jbK2�jjj � lMjjj: �9�

2.1. THE FIRST-ORDER ASYMPTOTIC SOLUTION OF THE NON-LINEAR REAL

EIGENEQUATION

If the damping in equation (9) is overlooked, the real eigenequation is

Kjjj � lMjjj: �10�
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Assume lr and jjjr are the rth real eigenvalue and eigenvector when the storage
module GR(l) is equal to GR0

. Here GR0
is the selected initial storage module of

the core material. K0 and K20 are the corresponding values to GR(l)�GR0
. Then,

�lr, �jjjr, Kr , and K2r are the values when the storage module is equal to GR(lr)
which corresponds to the frequency

����
lr
p

. Considering that Kr and K2r are linear
functions of the module GR(l), they can be expressed as the progressions of DGR

�l � lr � @lr
@GR

DGR � 1

2!

@2lr
@G2

R

DG2
R � . . . , �11�

�jjjr � jjjr �
@jjjr

@GR
DGR � 1

2!

@2jjjr

@G2
R

DG2
R � . . . , �12�

Kr � K0 � @K

@GR
DGR, �13�

K2r � K20 � @K

@GR
DGR, �14�

where

DGR � GR�lr� ÿ GR0
: �15�

Substituting equations (11), (12), and (13) into equation (10), one obtains

K0 � @K

@GR
DGR

� �
jjjr �

@jjjr

@GR
DGR � 1

2!

@2jjjr

@G2
R

DG2
R � . . .

� �

ÿ lr � @lr
@GR

DGR � 1

2!

@2lr
@G2

R

DG2
R � . . .

� �

6M jjjr �
@jjjr

@GR
DGR � 1

2!

@2jjjr

@G2
R

DG2
R � . . .

� �
� 0: �16�

From equation (16), the following equations are obtained:

�K0 ÿ lrM�jjjr � 0, �17�

�K0 ÿ lrM� @jjjr

@GR
� @lr

@GR
Mÿ @K

@GR

� �
jjjr: �18�

Equation (17) is the real eigenvalue problem of the constant stiffness matrix K0 .
The rth eigenvalue lr and eigenvector jjjr can be calculated easily by means of the
subspace iteration method or other methods.
The rth eigenvector �jjjr satis®es the following regularization equation

�jjjT
r M�jjjr � 1: �19�

Substituting equation (12) into equation (19) leads to the following equation
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jjjr �
@jjjr

@GR
DGR � . . .

� �T

M jjjr �
@jjjr

@GR
DGR � . . .

� �
� 1: �20�

From equation (20), one has

jjjT
r Mjjjr � 1, 2jjjT

r M
@jjjr

@GR
� 0: �21, 22�

The real modal shape of regularization is solved from equation (21). Then if
equation (18) is multiplied by jjjT

r on the left, one has

@lr
@GR

� jjjT
r

@K

@GR
jjjr: �23�

Therefore, the ®rst-order asymptotic real eigensolution of equation (10) is
written as

�lr � lr � @lr
@GR

DGR,
@lr
@GR

� jjjT
r

@K

@GR
jjjr,

Kr � K0 � @K

@GR
DGR, K2r � K20 � @K

@GR
DGR �24�

2.2. THE ORDER-REDUCTION-ITERATION OF THE COMPLEX EIGENEQUATION

If the estimated rth eigenvalue in equation (9) is determined by using equation
(24), the exact rth eigenvalue can be calculated by the direct iteration method.
But generally speaking, the order of equation (9) is too big to be performed in
practice. Here the Lanczos algorithm [5] is used to form m order orthogonal
complex base vectors. Then equation (9) can be reduced from an n order
eigenequation to an m order eigenequation at the base vectors formed. Because
m5 n, the order-reduced eigenequation can be easily calculated by the direct
iteration method and the computation ef®ciency can be improved greatly when
m�max (2r� 4, r� 16) [6].
If Kr and K2r are the stiffness matrix of the structure and the stiffness matrix

formed by the viscoelastic core, respectively, when l is equal to the rth ®rst-
order asymptotic eigenvalue �lr , the following iteration equations are de®ned by
the Lanczos algorithm:

gggi � bi�1qi�1 � Kÿ1r Mqi ÿ aiqi ÿ biqiÿ1, i � 1, . . . m: �25�
Here ai and bi are the orthogonal factors, gggi and qi are all Lanczos vectors; qi is
the regularization Lanczos vector, bi�1 is the regularization factor, and q0� 0.
Assuming

Qm � �q1 q2 . . . qm�, �26�
Qm satis®es the following orthogonality condition equation:
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QT
mMQm � I: �27�

From equation (27), the factors ai , bi , and bi�1 can be written as

ai � �Kÿ1r Mqi�TMqi, �28�

bi � �Kÿ1r Mqi�TMqiÿ1, �29�

bi�1 � �gggTi Mgggi�1=2: �30�

Substituting equations (13) and (14) into equation (9) leads to the following
equation:

K0 � @K

@GR
DGR � jb�Re�l�� K20 � @K

@GR
DGR

� �� �
jjj � lMjjj, �31�

where Re(.) denotes the real part of a complex quantity.
If

jjj � Qm�jjj, �32�
where �jjj is the eigenvector of the order-reduced system, substituting equation
(32) into equation (31) and multiplying equation (31) by QT

m on the left, one has

�K0 � @ �K

@GR
DGR � jb�Re�l�� �K20 � @ �K

@GR
DGR

� �� �
�jjj � l�jjj, �33�

where

�K0 � QT
mK0Qm, �34�

�K20 � QT
mK20Qm, �35�

@ �K

@GR
� QT

m

@K

@GR
Qm: �36�

Equation (33) is an mth order non-linear standard eigenequation. The
iteration solution is introduced as follows [7]:

�K0 � @ �K

@GR
DG�i�R � jb�Re�l�i�r �� �K20 � @ �K

@GR
DG�i�R

� �� �
�jjj�i�1� � l�i�1� �jjj�i�1�, �37�

DG�i�R � GR�Re�l�i�r �� ÿ GR0
, �38�

where l�1�r � �lr.
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If

jl�i�1�r ÿ l�i�r j< e, �39�
the iteration can be ended, where e is the absolute error limit given.
The approximate solution of equation (9) in the condition of e error is written

as

lr � lim
i!1

l�i�r , �40�

jjjr � Qm lim
i!1

�jjj�i�r : �41�

According to reference [8], one has

lr � o2
r �1� jZr�: �42�

Thus

or �
��������������
Re�lr�

p
, Zr �

Im�lr�
Re�lr� , �43, 44�

where or , Zr are the rth circular frequency and modal loss factor, and Re(.),
Im(.) denote the real part and the imaginary part of a complex quantity.

3. NUMERICAL RESULTS AND COMPARISON

Two simple test cases were run to assess the accuracy of the order-reduction-
iteration approach above. The ®rst one is a continuous sandwich beam shown in
Figure 1. The geometrical dimension is shown in the ®gure, too. The material
properties of the matrix layer, constrained layer, and the viscoelastic core are
revealed in the Appendix. It is clamped on the left.
Table 1 lists the ®rst three-order results computed by the order-reduction-

iteration approach (ORIA) and measured experimental ones of the natural
frequencies and modal loss factors of this case. It may be seen that the difference
is quite small in this simple case.
The second example is more complicated than the ®rst one. Here a

discontinuous sandwich beam is shown in Figure 2. A detailed discussion is

210

20

1

1

0.5��������� ���
�
�

Figure 1. Continuous cantilever sandwich beam tested (unit: mm)
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available in reference [6]. The material properties are the same as in the ®rst
case. It is also clamped on the left side. But the eigenequation is similar to
equation (9). Table 2 lists the numerical and experimental results of this
example. There are also very good agreements obtained between them.
Therefore, it is concluded that the order-reduction-iteration approach has almost
the same high accuracy in analysis of both uniformly and non-uniformly
distributed damping layer structures. It is also seen that the uniform damping
layer structures have more ef®cient damping than distributed ones.
In the ®rst-order asymptotic analysis, GR0

must be given by anticipation. In
order to evaluate the effect of GR0

on the computed results, Table 3 lists the
numerical results of the ®rst case at different GR0

. It seems that GR0
has very

little effect on the results. Hence, the approach is very useful in engineering
application.

TABLE 1

Natural frequencies and modal loss factors of the continuous sandwich beam in
Figure 1

Natural frequency (Hz) Modal loss factorz�������������������������}|�������������������������{ z�������������������������}|�������������������������{
Modal number ORIA Experiment ORIA Experiment

1 38�4 37�2 0�337 0�348
2 185�6 182�5 0�410 0�432
3 472�6 470�3 0�420 0�407

80

20

2

0.5

0.5

240

80
������������

Figure 2. Discontinuous cantilever sandwich beam tested (unit: mm).

TABLE 2

Natural frequencies and modal loss factors of the discontinuous sandwich beam in
Figure 2

Natural frequency (Hz) Modal loss factorz�������������������������}|�������������������������{ z�������������������������}|�������������������������{
Modal number ORIA Experiment ORIA Experiment

1 28�6 27�9 0�125 0�130
2 186�1 183�5 0�0945 0�0952
3 499�6 495�4 0�0959 0�0980
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4. CONCLUSION

Methods for ®nite element analysis of structures with layer viscoelastic
damping have been reviewed. None of these methods is yet in widespread use for
day-to-day design work. The order-reduction-iteration approach appears to be
the most promising method for large-scale applications.
The order-reduction-iteration approach simpli®es the frequency-variant

coef®cient non-linear complex eigenequation by combining ®rst-order real
asymptotic analysis with order-reduced iteration. It has the advantage of
simplicity, practicality, and being implemented with a modern ®nite element code
that is widely accessible and familiar to a large number of engineers. The
numerical results indicate that the predicated GR0

has very little effect on the
results. The method can treat not only uniformly but also non-uniformly
distributed sandwiches. It provides information of the direct usefulness in
designing a viscoelastically-damped treatment. The method has been demon-
strated for three-layer cantilever sandwich beams. Very good agreement has
been obtained with experimental solutions for natural frequencies and modal
loss factors.
Additional work is still required to make the order-reduction-iteration

approach a practical design tool. Further comparison with experiments will also
be required under more complicated conditions.
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APPENDIX: MATERIAL PROPERTIES

The material of the matrix layer and the constrained layer are all steel. The
viscoelastic core is the damping rubber. Their material properties are: density
r1�r3� 7831 kg/m3, r2� 990 kg/m3; Poisson ratio m1� m3� 0�3, m2� 0�45;
modulus E1�E3� 2�16 1011 N/m2. The subscripts l, 2, and 3 denote the matrix
layer, the damping layer, and the constrained layer, respectively.
The real storage modulus GR and the material loss factor b of the visco-elastic

core are: GR( f )� 1�76 106� 4�7682696 105f 0�654634, b( f )� 1/(0�8549449ÿ
2�381036610±3 f� 1�3066037610±5 f 2ÿ 3�066037610±8 f 3 �2�4198636 10±11 f 4),
where f denotes frequency and f�o/2p.
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